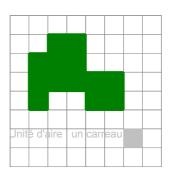
CHAPITRE 13: AIRES

Objectifs:

6.430 [S] Différencier périmètre et aire.

6.431 [S] Connaître, utiliser et convertir les unités d'aire.

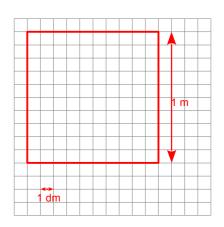

6.432 [S] Déterminer l'aire d'une surface à partir d'un pavage simple, comparer géométriquement des aires.

6.433 [S] Connaître et utiliser la formule donnant l'aire d'un rectangle (en particulier d'un carré).
6.434 [S] Calculer l'aire d'un triangle rectangle.
6.435 [S] Calculer l'aire d'un triangle quelconque dont une hauteur est tracée.
6.436 [S] Connaître et utiliser la formule donnant l'aire d'un disque.

I. Aire d'une figure

Définition: L'aire d'une figure est la mesure de sa surface, dans une unité d'aire donnée.

Exemple:



L'aire de la figure verte est égale à 13 unités d'aire.

II. Unités d'aire

L'unité d'aire légale est le mètre carré (noté m²). 1 m² correspond à l'aire d'un carré de côté 1 m.

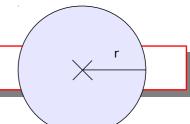
$$1 \text{ m}^2 = 100 \text{ dm}^2$$
 $1 \text{ cm}^2 = 100 \text{ mm}^2$ $1 \text{ mm}^2 = 100 \text{ cm}^2$ $1 \text{ mm}^2 = 0.01 \text{ cm}^2$

Les multiples et sous-multiples du m² sont :

Tableau de conversion des aires

km²	hm²	dam²	m ²	dm²	cm²	mm²

III.Formules d'aires de polygones particuliers

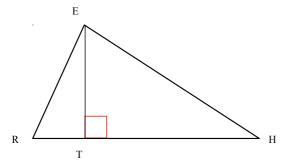

Pour calculer un périmètre ou une aire, les dimensions doivent être exprimées dans la même unité.

	Rectangle	Carré	Triangle rectangle	Triangle quelconque	
			a b	h b	
Aire	L×I	$c \times c$	$\frac{b \times a}{2} = (b \times a) \div 2$	$\frac{b \times h}{2} = (b \times h) \div 2$	

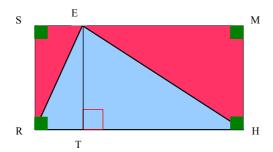
IV.Aire d'un disque

Si on note A l'aire du disque et r le rayon du disque,

on a : A =
$$\pi \times r^2 = \pi \times r \times r$$


Activité (n°3 p207 Bordas Myriade) : Aire d'un triangle

Un triangle rectangle (cas particulier)


- 1) Construire un triangle JKL rectangle en J tel que JK = 3 cm et JL = 5 cm.
- 2) a) Placer le point M tel que JKML soit un rectangle.
 - b) Quelles sont les dimensions du rectangle JKML? Quelle est son aire?
 - c) En déduire l'aire du triangle rectangle JKL en expliquant ta démarche.

Un triangle quelconque.

Le triangle ERH est un triangle quelconque dont on a tracé la hauteur [ET] et tel que RH = 5 cm et ET = 2 cm:

On construit le rectangle RSMH comme indiqué ci-dessous :

- 1) a) Que peut-on dire des aires des triangles RSE et RTE ? Expliquer.
 - b) Que peut-on dire de aires des triangles EMH et ETH? Expliquer.
 - c) En déduire l'aire du triangle RHE en expliquant ta démarche.
- 2) Déduire des questions précédentes une formule permettant de calculer l'aire d'un triangle quelconque dont une hauteur est tracée.